Use of Age, Height and Weight to Predict Injury in Pediatric Advanced Automatic Crash Notification

Joel Stitzel, PhD – PI

Andrea Doud MD, Ashley Weaver PhD, Jennifer Talton MS, Ryan Barnard MS, Samantha Schoell BS, Wayne Meredith MD, Shayn Martin MD, John Petty MD

Wake Forest University School of Medicine, Virginia Tech – Wake Forest University Center for Injury Biomechanics

Wake Forest School of Medicine

CHILDRESS INSTITUTE for Pediatric Trauma

The Ohio State University CENTER FOR CHILD INJURY PREVENTION STUDIES
Disclosures

• Funded by the Center for Child Injury Prevention Studies (CChIPS)
 - Multi-university Industry/University Cooperative Research Center (I/UCRC)
• Supported by Childress Institute for Pediatric Trauma
What is Advanced Automatic Crash Notification?

- **Automatic Crash Notification (ACN):** Technology that automatically alerts response centers when a motor vehicle crash (MVC) has taken place.

- **Advanced Automatic Crash Notification (AACN):** Technology that uses vehicle telemetry data from Event Data Recorder (EDR) to predict risk of serious injury among occupants.
A child’s developmental stage affects the injuries incurred.

Thus, a pediatric AACN algorithm should have some quantification of developmental stage to help determine injury risk.

Goal of this project was to determine best metric of development to use in a pediatric AACN (age, height or weight).
Methods

National Automotive Sampling System 2000-2011
- Maintained by NHTSA
- Provides representative sample of all crashes in the US

Evaluation of Occupants

✓ Age, height & weight evaluated & occupants with impossible/missing values removed

✓ Occupants classified as optimally, sub-optimally or unrestrained

✓ Occupants classified as obese, overweight, normal weight or underweight
Methods (Cont)

Evaluation of Crash

✓ Crash mode classified as rollover, frontal, rear, near-side or far-side

✓ Change in speed of vehicle at time of crash (delta V) recorded

Evaluation of Injuries

✓ Anatomic Patterns of Injuries
 • Body regions affected

✓ “Mechanistic” Patterns of Injuries
 • Presence/Absence of Fracture
 • Hemorrhagic Component
 • AIS Severity (2+ vs 3+)
Anatomic Patterns by Age

Percent of Injuries Involving Specific Body Region by Age

Increasing Age
(0yr) → (18yr)
Methods: Logistic Regression

- Occupant assigned dichotomous “Y/N” outcomes for each injury type

- **Logistic regression** employed to determine odds of each injury type given change in age, height or weight while controlling for cofounders (crash type, delta V, restraint/car seat use & gender)
Head Injuries

Adjusted Odds of Injury per Given Increase in Age, Height or Weight

- **Age (per 1 year increase)**
- **Height (per 5cm Increase)**
- **Weight (per 5kg increase)**

- **AIS 2+ Head Injury**
- **Hemorrhagic Brain Injury**
- **Skull Fracture**
- **AIS 3+ Head Injury**
Thoracic Injuries

- AIS 2+ Thoracic Injuries
- Thoracic Wall Fractures
- Internal Thoracic Injuries
- AIS 3+ Thoracic Injuries

Adjusted Odds Ratios
- Age (per 1 year increase)
- Height (per 5 cm increase)
- Weight (per 5 kg increase)
Abdominal Injuries

- Age (per 1 year increase)
- Height (per 5cm increase)
- Weight (per 5kg increase)

Adjusted Odds of Injury per Given Increase in Age, Height or Weight

Adjusted Odds Ratios

0.99 1.00 1.01 1.02 1.03 1.04 1.05

AIS 2+ Abdominal Injuries

Hemorrhagic Abdominal Injuries

AIS 3+ Abdominal Injuries
Spine Injuries

Adjusted Odds of Injury per Given Increase in Age, Height or Weight

Adjusted Odds Ratios

- Age (per 1 year increase)
- Height (per 5cm increase)
- Weight (per 5kg increase)

AIS 2+ Spine Injuries
Spinal Fractures
AIS 3+ Spine Injuries
Extremity Injuries

- Age (per 1 year increase)
- Height (per 5cm increase)
- Weight (per 5kg increase)

Adjusted Odds of Injury per Given Increase in Age, Height or Weight

Adjusted Odds Ratios

AIS 2+ Upper Extremity Injury

AIS 2+ Lower Extremity Injury
The BMI Effect

- Age (BMI not controlled)
- Age (BMI controlled)

Adjusted Odds Ratio of Injury per Given Increase in Age, Height or Weight
Age, Height or Weight?

 ✓ Weight was not a significant predictor of injury in many of the models.

 ✓ Height would be nearly impossible to keep track of by a vehicle for use in an AACN algorithm.

 ✓ Age was a significant predictor of all injury types, even after controlling for BMI.

 ✓ Age can be programmed into vehicle’s AACN software via birthdate.

 ✓ Age is likely to be the best predictor for our purposes.
Thank you!

Questions?
Back Up Slides
Scope of the Problem

• Unintentional injury is the leading cause of death in children aged 1-19 years in the US

• In 2012, Motor Vehicle Crashes (MVCs) accounted for the majority of these fatalities
Trauma Triage

- **Trauma Triage**: Process of determining which patient needs the most urgent treatment and where (TC vs Non-TC)

- **“Golden Hour” of Trauma**
 - Want to make triage decisions as quickly as possible
 - Need best information to make best decisions
Flow of Events after MVC = Process of Trauma Triage

Traditional 9-1-1 Flowchart

Event Occurs → 9-1-1 Call → PSAP/EMD → Response → Scene Care → Transfer of Care → Treatment
How can we speed and decrease risk of error after MVC?

Advanced Automatic Crash Notifications Impact on a 9-1-1 Event

Event Occurs 9-1-1 Call PSAP/EMD Response

AACN Information

Transfer-Continuum Treatment Scene Care
Determining the Most Frequent Injuries

2000-2011
Excluded 2009-2011 with MY > 10 yrs (injury data missing)

Inclusion Criteria
- Age < 19yo
- AIS 2+ Injuries

95%: 195 Unique Injuries
100%: 551 Unique Injuries
Descriptive Statistics

After exclusions, **11,541 occupants** for evaluation

- **Mean Age**: 12.6 yrs +/- 5.6 yr
- **Gender**: 48% female
- **BMI Category**
 - 5% Underweight
 - 58% normal weight
 - 14% overweight
 - 21% obese
- **Restraint Status**
 - 25% unrestrained,
 - 54% optimally restrained
 - 20% sub-optimally restrained

- **Impacts**
 - 52% frontal impacts
 - 21% rollover
 - 10% far-side
 - 9% near-side
 - 6% rear